Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531109

RESUMEN

As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.

2.
Toxicol In Vitro ; 95: 105762, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072180

RESUMEN

The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.


Asunto(s)
Fluorocarburos , Prealbúmina , Humanos , Prealbúmina/farmacología , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Yoduro Peroxidasa , Glándula Tiroides/metabolismo , Fluorocarburos/toxicidad
3.
Math Biosci ; 362: 109021, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37201649

RESUMEN

A biologically based computational model was developed to describe the hypothalamic-pituitary-thyroid (HPT) axis in developing Xenopus laevis larvae. The goal of this effort was to develop a tool that can be used to better understand mechanisms of thyroid hormone-mediated metamorphosis in X. laevis and predict organismal outcomes when those mechanisms are perturbed by chemical toxicants. In this report, we describe efforts to simulate the normal biology of control organisms. The structure of the model borrows from established models of HPT axis function in mammals. Additional features specific to X. laevis account for the effects of organism growth, growth of the thyroid gland, and developmental changes in regulation of thyroid stimulating hormone (TSH) by circulating thyroid hormones (THs). Calibration was achieved by simulating observed changes in stored and circulating levels of THs during a critical developmental window (Nieuwkoop and Faber stages 54-57) that encompasses widely used in vivo chemical testing protocols. The resulting model predicts that multiple homeostatic processes, operating in concert, can act to preserve circulating levels of THs despite profound impairments in TH synthesis. Represented in the model are several biochemical processes for which there are high-throughput in vitro chemical screening assays. By linking the HPT axis model to a toxicokinetic model of chemical uptake and distribution, it may be possible to use this in vitro effects information to predict chemical effects in X. laevis larvae resulting from defined chemical exposures.


Asunto(s)
Glándula Tiroides , Hormonas Tiroideas , Animales , Glándula Tiroides/fisiología , Xenopus laevis/fisiología , Larva , Hormonas Tiroideas/farmacología , Simulación por Computador , Mamíferos
4.
Aquat Toxicol ; 249: 106227, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35767922

RESUMEN

The transition to include in vitro-based data in chemical hazard assessment has resulted in the development and implementation of screening assays to cover a diversity of biological pathways, including recently added assays to interrogate chemical disruption of proteins relevant to thyroid signaling pathways. Iodotyrosine deiodinase (IYD), the iodide recycling enzyme, is one such thyroid-relevant endpoint for which a human-based screening assay has recently been developed and used to screen large libraries of chemicals. Presented here is the development of an amphibian IYD inhibition assay and its implementation to conduct a cross-species comparison between chemical inhibition of mammalian and non-mammalian IYD enzyme activity. The successful development of an amphibian IYD inhibition assay was based on demonstration of sufficient IYD enzyme activity in several tissues collected from larval Xenopus laevis. With this new assay, 154 chemicals were tested in concentration-response to provide a basis for comparison of relative chemical potency to results obtained from the human IYD assay. Most chemicals exhibited similar inhibition in both assays, with less than 25% variation in median inhibition for 120 of 154 chemicals and 85% concordance in categorization of "active" (potential IYD inhibitor) versus "inactive". For chemicals that produced 50% or greater inhibition in both assays, rank-order potency was similar, with the majority of the IC50s varying by less than 2-fold (and all within an order of magnitude). Most differences resulted from greater maximum inhibition or higher chemical potency observed with human IYD. This strong cross-species agreement suggests that results from the human-based assay would be conservatively predictive of chemical effects on amphibian IYD.


Asunto(s)
Yoduro Peroxidasa , Contaminantes Químicos del Agua , Animales , Humanos , Yoduro Peroxidasa/metabolismo , Yoduros/metabolismo , Yoduros/farmacología , Mamíferos/metabolismo , Glándula Tiroides , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/metabolismo
5.
Toxicol Sci ; 187(1): 139-149, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35179606

RESUMEN

Iodothyronine deiodinases (DIO) are key enzymes that influence tissue-specific thyroid hormone levels during thyroid-mediated amphibian metamorphosis. Within the larger context of evaluating chemicals for thyroid system disrupting potential, chemical activity toward DIOs is being evaluated using high-throughput in vitro screening assays as part of U.S. EPA's ToxCast program. However, existing data gaps preclude any inferences between in vitro chemical inhibition of DIOs and in vivo outcomes relevant to ecological risk assessment. This study aimed to generate targeted data in a laboratory model species (Xenopus laevis) using a model DIO inhibitor, iopanoic acid (IOP), to characterize linkages between in vitro potency, in vivo biochemical responses, and adverse organismal outcomes. In vitro potency of IOP toward DIOs was evaluated using previously developed in vitro screening assays, which showed concentration-dependent inhibition of human DIO1 (IC50: 97 µM) and DIO2 (IC50: 231 µM) but did not inhibit human or X. laevis DIO3 under the assay conditions. In vivo exposure of larval X. laevis to 0, 2.6, 5.3, and 10.5 µM IOP caused thyroid-related biochemical profiles in the thyroid gland and plasma consistent with hyperthyroxinemia but resulted in delayed metamorphosis and significantly reduced growth in the highest 2 exposure concentrations. Independent evaluations of dio gene expression ontogeny, together with existing literature, supported interpretation of IOP-mediated effects resulting in a proposed adverse outcome pathway for DIO2 inhibition leading to altered amphibian metamorphosis. This study highlights the types of mechanistic data needed to move toward predicting in vivo outcomes of regulatory concern from in vitro bioactivity data.


Asunto(s)
Yoduro Peroxidasa , Ácido Yopanoico , Animales , Humanos , Ácido Yopanoico/metabolismo , Ácido Yopanoico/farmacología , Larva , Metamorfosis Biológica , Glándula Tiroides , Xenopus laevis
6.
Toxicol In Vitro ; 71: 105073, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33352258

RESUMEN

The iodide recycling enzyme, iodotyrosine deiodinase (IYD), is a largely unstudied molecular mechanism through which environmental chemicals can potentially cause thyroid disruption. This highly conserved enzyme plays an essential role in maintaining adequate levels of free iodide for thyroid hormone synthesis. Thyroid disruption following in vivo IYD inhibition has been documented in mammalian and amphibian models; however, few chemicals have been tested for IYD inhibition in either in vivo or in vitro assays. Presented here are the development and application of a screening assay to assess susceptibility of IYD to chemical inhibition. With recombinant human IYD enzyme, a 96-well plate in vitro assay was developed and then used to screen over 1800 unique substances from the U.S. EPA ToxCast screening library. Through a tiered screening approach, 194 IYD inhibitors were identified (inhibited IYD enzyme activity by 20% or greater at target concentration of 200 µM). 154 chemicals were further tested in concentration-response (0.032-200 µM) to determine IC50 and rank-order potency. This work broadens the coverage of thyroid-relevant molecular targets for chemical screening, provides the largest set of chemicals tested for IYD inhibition, and aids in prioritizing chemicals for targeted in vivo testing to evaluate thyroid-related adverse outcomes.


Asunto(s)
Bioensayo/métodos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Yoduro Peroxidasa/antagonistas & inhibidores , Baculoviridae/genética , Yoduro Peroxidasa/genética , Proteínas Recombinantes
7.
Toxicol Sci ; 175(2): 236-250, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176285

RESUMEN

Chemical safety evaluation is in the midst of a transition from traditional whole-animal toxicity testing to molecular pathway-based in vitro assays and in silico modeling. However, to facilitate the shift in reliance on apical effects for risk assessment to predictive surrogate metrics having characterized linkages to chemical mechanisms of action, targeted in vivo testing is necessary to establish these predictive relationships. In this study, we demonstrate a means to predict thyroid-related metamorphic success in the model amphibian Xenopus laevis using relevant biochemical measurements during early prometamorphosis. The adverse outcome pathway for thyroperoxidase inhibition leading to altered amphibian metamorphosis was used to inform a pathway-based in vivo study design that generated response-response relationships. These causal relationships were used to develop Bayesian probabilistic network models that mathematically determine conditional dependencies between biochemical nodes and support the predictive capability of the biochemical profiles. Plasma thyroxine concentrations were the most predictive of metamorphic success with improved predictivity when thyroid gland sodium-iodide symporter gene expression levels (a compensatory response) were used in conjunction with plasma thyroxine as an additional regressor. Although thyroid-mediated amphibian metamorphosis has been studied for decades, this is the first time a predictive relationship has been characterized between plasma thyroxine and metamorphic success. Linking these types of biochemical surrogate metrics to apical outcomes is vital to facilitate the transition to the new paradigm of chemical safety assessments.


Asunto(s)
Antitiroideos/efectos adversos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Peroxidasa/efectos de los fármacos , Tiroxina/sangre , Xenopus laevis/sangre , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/efectos adversos , Glándula Tiroides/efectos de los fármacos
8.
Environ Health Perspect ; 127(9): 95001, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31487205

RESUMEN

BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Bioensayo , Humanos , Hormonas Tiroideas
9.
Toxicol Sci ; 166(2): 318-331, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137636

RESUMEN

The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency in tissues and subsequent negative developmental consequences. IYD activity is especially critical under conditions of lower dietary iodine and in low iodine environments. Our objective was to evaluate the toxicological relevance of IYD inhibition in a model amphibian (Xenopus laevis) used extensively for thyroid disruption research. First, we characterized IYD ontogeny through quantification of IYD mRNA expression. Under normal development, IYD was expressed in thyroid glands, kidneys, liver, and intestines, but minimally in the tail. Then, we evaluated how IYD inhibition affected developing larval X. laevis with an in vivo exposure to a known IYD inhibitor (3-nitro-l-tyrosine, MNT) under iodine-controlled conditions; MNT concentrations were 7.4-200 mg/L, with an additional 'rescue' treatment of 200 mg/L MNT supplemented with iodide. Chemical inhibition of IYD resulted in markedly delayed development, with larvae in the highest MNT concentrations arrested prior to metamorphic climax. This effect was linked to reduced glandular and circulating thyroid hormones, increased thyroidal sodium-iodide symporter gene expression, and follicular cell hypertrophy and hyperplasia. Iodide supplementation negated these effects, effectively rescuing exposed larvae. These results establish toxicological relevance of IYD inhibition in amphibians. Given the highly conserved nature of the IYD protein sequence and scarcity of environmental iodine, IYD should be further investigated as a target for thyroid axis disruption in freshwater organisms.


Asunto(s)
Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/metabolismo , Yoduros/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Yoduro Peroxidasa/genética , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Monoyodotirosina/sangre , ARN Mensajero/metabolismo , Simportadores/metabolismo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Tirosina/análogos & derivados , Tirosina/farmacología , Xenopus laevis
10.
Aquat Toxicol ; 199: 240-251, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29674245

RESUMEN

The Larval Amphibian Growth and Development Assay (LAGDA) is an internationally harmonized testing guideline for evaluating effects of chronic chemical exposure in amphibians. In order to evaluate the effects of chronic exposure to an antiandrogenic chemical in an amphibian model, prochloraz was tested using a variation of the LAGDA design. Exposure was initiated with <1d post-fertilization embryos at nominal concentrations of 0, 6.7, 20, 60 and 180 µg/L (0, 18, 53, 159, 478 nM) and continued in flow-through conditions until two months following the median time that controls completed metamorphosis. Growth, developmental rate, circulating thyroid hormone and thyroid gland histopathology were evaluated in a subsample at completion of metamorphosis. There were no effects on growth or development at this stage, but circulating thyroid hormone was elevated in the 20, 60 and 180 µg/L treatments and minimal to mild thyroid follicular cell hypertrophy was observed histologically in the 180 µg/L treatment. Growth, overt toxicity, and reproductive development were evaluated at test termination. There were no effects on growth in either gender, but livers and kidneys exhibited treatment-related pathologies consistent with organ toxicity related to metabolism and presumably impaired excretion of prochloraz metabolites. Histological assessments of female ovaries resulted in minimal pathologies only in the 180 µg/L treatment while male testes exhibited numerous treatment-related pathologies that are consistent with previously reported antiandrogenic effects of prochloraz in other species. The most severe testis pathologies occurred in the 180 µg/L treatment; however, incidences of treatment-related pathologies occurred in all prochloraz treatments. Müllerian duct regression in males was inhibited by prochloraz exposure while Müllerian duct maturation in females was accelerated, characteristic of a feminizing effect. Gene expression levels of potential biomarkers of testis function were also measured. Relative abundance of cyp17a1 transcripts was generally unaffected by prochloraz exposure whereas the Insl3 orthologue, rflcii, was elevated by 3 and >5-fold in the 60 and 180 µg/L treatments, respectively, indicating impaired Leydig cell maturation and testosterone signaling. Overall, prochloraz exposure caused effects characteristic of an antiandrogenic mode of action, which is consistent with previously reported results in other species and supports the utility of the LAGDA design for chemical testing.


Asunto(s)
Antagonistas de Andrógenos/toxicidad , Fungicidas Industriales/toxicidad , Imidazoles/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Pruebas de Toxicidad , Xenopus laevis/crecimiento & desarrollo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Especificidad de Órganos/efectos de los fármacos , Vitelogeninas/sangre , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/sangre , Xenopus laevis/genética
11.
J Appl Toxicol ; 36(12): 1651-1661, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27241388

RESUMEN

The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in a model amphibian species, Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg l-1 BP-2 until 2 months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg l-1 treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genetic males showing both testis and ovary tissues (1.5 mg l-1 ) and 100% of the genetic males in the 3.0 and 6.0 mg l-1 treatments experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely vitellogenin and other estrogen-responsive yolk proteins. This is the first study that demonstrates the endocrine effects of this mixed mode of action chemical in an amphibian species and demonstrates the utility of the LAGDA design for supporting chemical risk assessment. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Benzofenonas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente/métodos , Metamorfosis Biológica/efectos de los fármacos , Animales , Bioensayo , Relación Dosis-Respuesta a Droga , Femenino , Gónadas/efectos de los fármacos , Gónadas/embriología , Gónadas/crecimiento & desarrollo , Larva , Masculino , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/embriología , Glándula Tiroides/crecimiento & desarrollo , Xenopus laevis
12.
J Appl Toxicol ; 36(12): 1639-1650, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27143402

RESUMEN

The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized test guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of the Environment. The LAGDA was designed to evaluate apical effects of chronic chemical exposure on growth, thyroid-mediated amphibian metamorphosis and reproductive development. During the validation phase, two well-characterized endocrine-disrupting chemicals were tested to evaluate the performance of the initial assay design: xenoestrogen 4-tert-octylphenol (tOP) and xenoandrogen 17ß-trenbolone (TB). Xenopus laevis embryos were exposed, in flow-through conditions, to tOP (nominal concentrations: 0.0, 6.25, 12.5, 25 and 50 µg l-1 ) or TB (nominal concentrations: 0.0, 12.5, 25, 50 and 100 ng l-1 ) until 8 weeks post-metamorphosis, at which time growth measurements were taken, and histopathology assessments were made of the gonads, reproductive ducts, liver and kidneys. There were no effects on growth in either study and no signs of overt toxicity, sex reversal or gonad dysgenesis. Exposure to tOP caused a treatment-related decrease in circulating thyroxine and an increase in thyroid follicular cell hypertrophy and hyperplasia (25 and 50 µg l-1 ) during metamorphosis. Müllerian duct development was affected after exposure to both chemicals; tOP exposure caused dose-dependent maturation of oviducts in both male and female frogs, whereas TB exposure caused accelerated Müllerian duct regression in males and complete regression in >50% of the females in the 100 ng l-1 treatment. Based on these results, the LAGDA performed adequately to evaluate apical effects of chronic exposure to two endocrine-active compounds and is the first standardized amphibian multiple life stage toxicity test to date. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente/métodos , Metamorfosis Biológica/efectos de los fármacos , Fenoles/toxicidad , Acetato de Trembolona/toxicidad , Animales , Bioensayo , Relación Dosis-Respuesta a Droga , Femenino , Larva , Masculino , Conductos Paramesonéfricos/efectos de los fármacos , Conductos Paramesonéfricos/embriología , Conductos Paramesonéfricos/crecimiento & desarrollo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/embriología , Glándula Tiroides/crecimiento & desarrollo , Xenopus laevis
13.
Toxicol Sci ; 146(2): 254-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953703

RESUMEN

As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of 6 benzothiazoles to affect endpoints related to thyroid hormone synthesis inhibition were assessed using in vitro, ex vivo, and in vivo assays. Inhibition of thyroid peroxidase (TPO) derived from pig thyroid glands was determined for benzothiazole (BTZ), 2-mercaptobenzothiazole (MBT), 5-chloro-2-mercaptobenzothiazole (CMBT), 2-aminobenzothiazole (ABT), 2-hydroxybenzothiazole (HBT), and 2-methylthiobenzothiazole (MTBT). Their rank order potency for TPO inhibition was MBT=CMBT>ABT>BTZ, whereas HBT and MTBT exhibited no inhibitory activity. The benzothiazoles were tested further in a Xenopus laevis thyroid gland explant culture assay in which inhibition of thyroxine (T4) release was the measured endpoint. In this assay all 6 benzothiazoles inhibited T4 release. The activity of the benzothiazoles for disrupting thyroid hormone activity was verified in vivo using X. laevis tadpoles in a 7-day assay. The 2 most potent chemicals for TPO inhibition, MBT and CMBT, produced responses in vivo indicative of T4 synthesis inhibition including induction of sodium iodide symporter mRNA and decreases in glandular and circulating thyroid hormones. The capability to measure thyroid hormone levels in the glands and blood by ultrahigh performance LC-MS/MS methods optimized for small tissue samples was critical for effects interpretation. These results indicate that inhibition of TPO activity in vitro was a good indicator of a chemical's potential for thyroid hormone disruption in vivo and may be useful for prioritizing chemicals for further investigation.


Asunto(s)
Benzotiazoles/toxicidad , Disruptores Endocrinos/toxicidad , Larva/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Técnicas In Vitro , Larva/crecimiento & desarrollo , Porcinos , Glándula Tiroides/metabolismo , Xenopus laevis/crecimiento & desarrollo
14.
Gen Comp Endocrinol ; 214: 103-13, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24960269

RESUMEN

African clawed frog Xenopus sp. is used extensively for developmental biology and toxicology research. Amid concerns of environmental pollutants disrupting endocrine systems and causing altered reproductive development in wildlife, eco-toxicology research has led to a focus on linking molecular initiating events to population-level effects. As such, efforts to better understand reproductive development at the molecular level in these model species are warranted. To that end, transcriptomes were characterized in differentiating Xenopus tropicalis gonad tissues at Nieuwkoop and Faber (NF) stage 58 (pro-metamorphosis), NF66 (completion of metamorphosis), 1week post-metamorphosis (1WPM), and 2weeks post-metamorphosis (2WPM). Differential expression analysis between tissue types at each developmental stage revealed a substantial divergence of ovary and testis transcriptomes starting between NF58 and NF66; transcriptomes continued to diverge through 2WPM. Generally, testis-enriched transcripts were expressed at relatively constant levels, while ovary-enriched transcripts were up-regulated within this developmental period. Functional analyses of differentially expressed transcripts allowed linkages to be made between their putative human orthologues and specific cellular processes associated with differentiating gonad tissues. In ovary tissue, genetic programs direct germ cells through meiosis to the diplotene stage when maternal mRNAs are transcribed and trafficked to oocytes for translation following fertilization. In the testis, gene expression is consistent with connective tissue development, tubule formation, and germ cell support (Leydig and Sertoli cells). This dataset exhibited remarkable consistency with transcript profiles previously described in gonad tissues across species, and emphasizes the universal importance of certain transcripts for germ cell development and preparation of these tissues for reproduction.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Ovario/metabolismo , Testículo/metabolismo , Xenopus/metabolismo , Animales , Femenino , Humanos , Masculino , Metamorfosis Biológica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/citología , Ovario/citología , Reproducción/genética , Testículo/citología , Xenopus/crecimiento & desarrollo
15.
Aquat Toxicol ; 126: 128-36, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178179

RESUMEN

Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18-357 µg/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23-435 µg/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.


Asunto(s)
Benzotiazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis , Animales , Benzotiazoles/análisis , Activación Enzimática/efectos de los fármacos , Yoduro Peroxidasa/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Análisis de Supervivencia , Hormonas Tiroideas/sangre , Hormonas Tiroideas/metabolismo , Agua/química , Contaminantes Químicos del Agua/análisis
16.
Aquat Toxicol ; 98(1): 44-50, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20153061

RESUMEN

Thyroid axis disruption is an important consideration when evaluating risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone (TH)-dependent. Inhibition of TH synthesis in these species leads to developmental delay, and assays designed to capture these effects take several weeks to complete. In an effort to develop a shorter term approach, the early responses of various endpoints were evaluated in Xenopus laevis throughout 8d of exposure to three TH synthesis inhibitors: methimazole (100mg/L), 6-propylthiouracil (6-PTU) (20mg/L), and perchlorate (4 mg/L). Endpoints included thyroid gland histology and cell numbers, circulating TH concentrations, and thyroidal TH and associated iodo-compounds. Thyroidal 3,5-diodo-L-tyrosine (DIT) and thyroxine (T4) were significantly reduced from day 2 onward by all three chemicals, while 3-monoiodo-L-tyrosine (MIT) was significantly reduced by methimazole and perchlorate, but not by 6-PTU. These reductions were the earliest indicators of TH synthesis inhibition. Histological effects were apparent on day 4 and became more exaggerated through day 8. However, reductions in circulating T4 and increases in thyroid gland cell numbers were not apparent until day 6. Reductions of thyroidal MIT, DIT, and T4 and circulating T4 are indicative of inhibitory effects of the chemicals on TH synthesis. Changes in thyroid histology and cell number represent compensatory effects modulated by circulating TSH. These observations establish a basis for the development of short term amphibian-based methods to evaluate thyroid axis effects using a suite of diagnostic endpoints.


Asunto(s)
Antitiroideos/toxicidad , Glándula Tiroides/efectos de los fármacos , Xenopus laevis/fisiología , Animales , Recuento de Células , Larva/efectos de los fármacos , Metimazol/toxicidad , Percloratos/toxicidad , Propiltiouracilo/toxicidad , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Hormonas Tiroideas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...